

«Основы производства радиоактивных изотопов»

Лекция 8. Применение медицинских генераторов радионуклидов.

и.о. доцента кафедры теоретической и ядерной физики PhD Зарипова Ю.А. Генераторные радионуклиды (например, 99mTc, 113mIn, 81mKr) являются короткоживущими и образуются из изотопов с длительным периодом полураспада, помещённых в свинцовый контейнер (генератор).

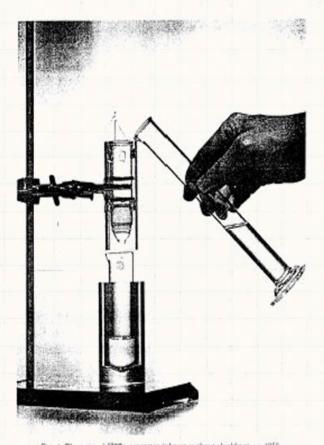
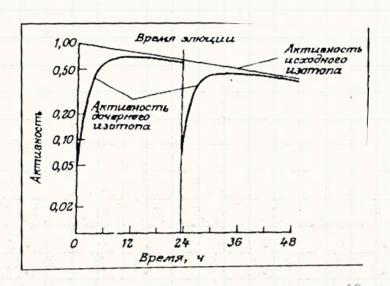
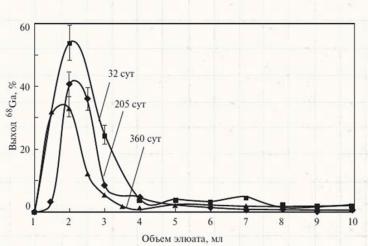
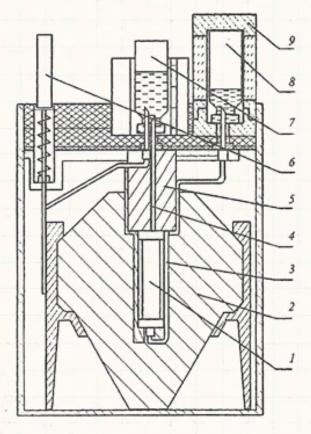


Fig. 1. The original *4*Tc generator (shown without shielding), es. 1958.


Первый генератор ^{99m}Tc


Walter Tucker and Margaret Green, Brookhaven National Lab., USA, 1958

- Существует большое количество параметров для классификации радионуклидных генераторов, например по методу химического раз деления и особенностям, присущим этому методу:
- 1. **Хроматографические генераторы.** Радионуклид с высокой удельной активностью (малой массой) сорбционным способом вводят в начало хроматографической колонки, при этом он селективно поглощается и надежно удерживается сорбентом. Самый распространенный пример генератор Тс-99m, где Мо-99 производится из продуктов деления урана.
- 2. Генераторы на основе твердой матрицы гелевые генераторы. Рассмотрим на примере молибдена, производимого по реакции (n, γ). Из облученного молибдена получают химическое соединение молибдат циркония, который загружают в колонку генератора. Такой генератор позволяет иметь в колонке значительное количество молибдена. В процессе производства генераторов данного типа не происходит накопления нежелательных побочных продуктов облучения.
- 3. Экстракционные генераторы. В них используется жидкостная экстракция, позволяющая перерабатывать большие количества материалов и достигать значительных степеней очистки. Однако использование органических экстрагентов и сложность оборудования, длительность и трудоемкость этого процесса, а также высокая радиационная нагрузка на персонал уменьшает привлекательность данного метода.


Основные элементы генератора колонка, система коммуникации и защитный кожух. Колонка содержит сорбент с материнским радионуклидом. Образующийся в результате распада дочерний радионуклид вымывают из колонки элюентом и получают элюатраствор с дочерним радионуклидом.

В 99 Мо $/^{99m}$ Тс - генераторе материнский радионуклид - 99 Мо ($T_{1/2}$ = 66 час), сорбент - окись алюминия, Al_2O_3 , дочерний PH - 99m Тс ($T_{1/2}$ = 6 час). 99m Тс «выдавливается» из колонки с Al_2O_3 изотоническим раствором (0,9% NaCl). 99 Мо $\rightarrow \beta^- + ^{99m}$ Тс $\rightarrow ^{99}$ Тс + γ (E_{γ} =140 кзB, 98%)

Схема конструкции генератора 99mTc

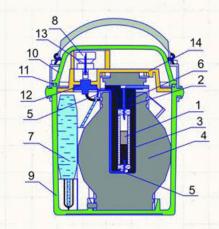
контейнер медицинский (радиационная защита)

флакон (вауумированный) с элюатом

флакон с элюентом

фильтр воздушный

пробка (радиационная защита)


линия элюента

линия элюата

корпус генератора (радиационная защита)

колонка с материнским радионуклиидом

Генератор технеция-99м в транспортном положении

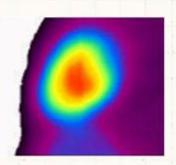
1-колонка, 2-пробка, 3-гильза, 4-контейнер защитный, 5-линия элюента, 6-игла верхняя, 7-контейнер «КОМПОПЛАСТ»-300, 8-флакон предохранительный, 9-сосуд охранный, 10-крышка, 11-кольцо резиновое, 12-фильтр гидрофильный Millex, 13-игла инъекционная LYER, 14-панель.

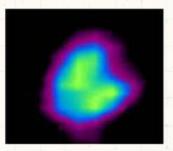
Радионуклиды, используемые в генераторах изотопов					
Родительский радионуклид	T _{1/2}	Дочерний радионуклид	T _{1/2}		
⁶² Zn	9.2 ч	⁶² Cu	9.7 м		
⁶⁸ Ge	271 дн	⁶⁸ Ga	68 м		
⁸² Sr	25 дн	⁸² Rb	1.26 м		
⁸¹ Rb	4.6 ч	81mKr	13 c		
⁹⁰ Sr	28.9 л	90Y	64 .1 ч		
⁹⁹ Mo	66 ч	^{99m} Tc	6 м		
¹¹³ Sn	115.1 дн	^{113m} In	99.5 м		
122Xe	20.1 ч	122 _I	3.6 м		
188 _W	69.8	¹⁸⁸ Re	17 ч		

82Sr (25, 5 dh.)→82Rb (1,3 muh.)

Принцип работы стронций/рубидиевого-82 генератора

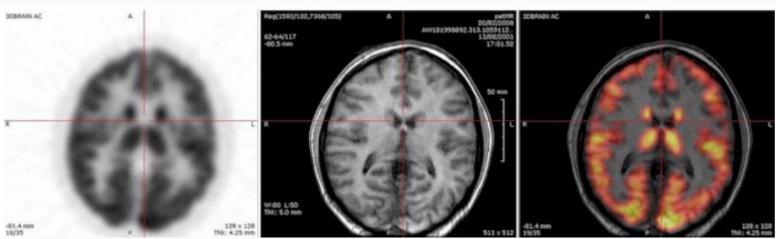
Испытания генератора на позитронно-эмиссионном томографе

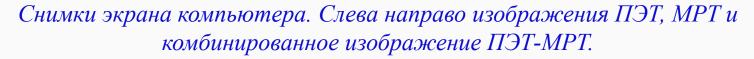



Генератор

Сердце кролика: здоровое с инфарктом миокарда

ГЕНЕРАТОРНЫЕ ПОЗИТРОН-ИЗЛУЧАТЕЛИ

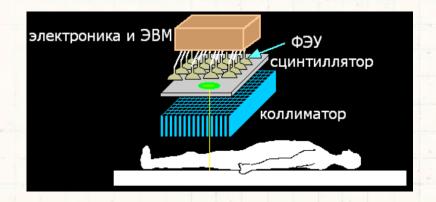

Получение ПЭТ-изображений

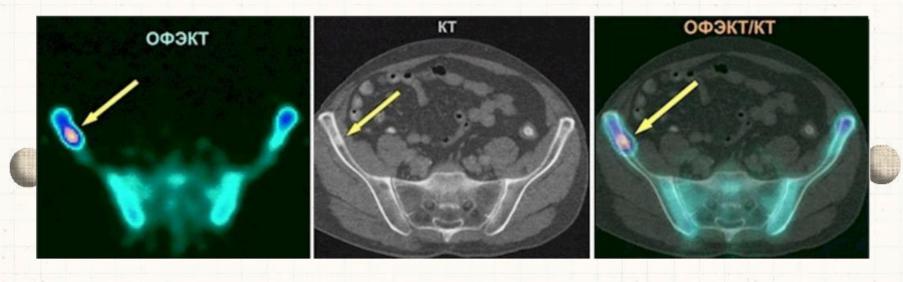

Реконструкция изображения

Генератор- ная система	Роди- тельский нуклид	Дочерний нуклид				
	$T_{1/2}$	$T_{1/2}$	Выход позитрона, %	E_{β^+} , МэВ	Применение	
82Sr/82Rb	25,6 сут	1,27 мин	95,0	1,41	Перфузия	
¹⁴⁰ Nd/ ¹⁴⁰ Pr	3,37 сут	3,39 мин	51,0	0,544	Перфузия	
¹¹⁸ Te/ ¹¹⁸ Sb	6,00 сут	3,6 мин	74,0	0,882	Перфузия	
¹²² Xe/ ¹²² I	20,1 ч	3,6 мин	77,0	1,09	Мечение	
¹²⁸ Ba/ ¹²⁸ Cs	2,43 сут	3,62 мин	69,0	0,869	Перфузия	
¹³⁴ Ce/ ¹³⁴ La	3,16 сут	6,4 мин	63,0	0,756	Перфузия	
⁶² Zn/ ⁶² Cu	9,26 ч	9,74 мин	97,0	1,28	Перфузия, мечение	
⁵² Fe/ ^{52m} Mn	8,28 сут	21,1 мин	97,0	1,13	Перфузия	
⁶⁸ Ge/ ⁶⁸ Ga	270,8 сут	1,135 ч	89,0	0,74	Перфузия, мечение	
¹¹⁰ Sn/ ^{110m} In	4,1 ч	1,15 ч	62,0	0,623	Мечение	
⁴⁴ Ti/ ⁴⁴ Sc	60,3 г.	3,927 ч	94,0	0,597	Мечение	
⁷² Se/ ⁷² As	8,4 сут	1,083 сут	88,0	1,02	Мечение	

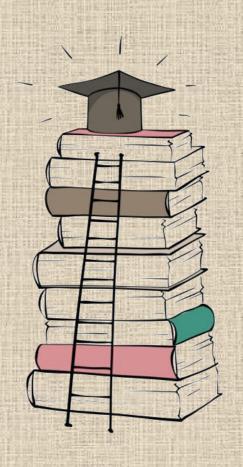
Позитронно-эмиссионная томография (Двухфотонная эмиссионная томография)

ГЕНЕРАТОРНЫЕ ФОТОН-ИЗЛУЧАТЕЛИ


Фотонных излучателей требуют сцинтиграфия и более продвинутый вариант ОФЭКТ. Необходимо выбрать радионуклид, который испускает только гамма-кванты, обычно это выполняется в случае изомерного перехода и К-захвата.


Сцинтиграфия костей скелета

Передняя проекция. Задняя проекция «Горячий очаг» в позвонках, левом предплечье и в головке правой плечевой кости.


⁷⁷Br (
$$T_{1/2} = 2,377 \text{ сут}$$
)/^{77m}Se ($T_{1/2} = 17,4 \text{ c}$);
¹⁰⁹Cd ($T_{1/2} = 1,267 \text{ года}$)/^{109m}Ag ($T_{1/2} = 39,6 \text{ c}$);
¹¹³Sn ($T_{1/2} = 115,09 \text{ сут}$)/^{113m}In ($T_{1/2} = 1,658 \text{ ч}$);
¹¹⁵Cd ($T_{1/2} = 2,228 \text{ сут}$)/^{115m}In ($T_{1/2} = 4,486 \text{ ч}$);
⁸¹Rb ($T_{1/2} = 4,58 \text{ ч}$)/^{81m}Kr ($T_{1/2} = 13 \text{ c}$);
¹⁹¹Os ($T_{1/2} = 15,4 \text{ сут}$)/^{191m}Ir ($T_{1/2} = 4,94 \text{ c}$);
^{195m}Hg ($T_{1/2} = 1,73 \text{ сут}$)/^{195m}Au ($T_{1/2} = 30,5 \text{ c}$);
¹⁷⁸W ($T_{1/2} = 21,5 \text{ сут}$)/^{178m}Ta ($T_{1/2} = 9,31 \text{ мин}$).

Изображения в ОФЭКТ, КТ и интегрированной системе ОФЭКТ/КТ

СПАСИБО ЗА ВНИМАНИЕ!

